期刊VIP學術指導 符合學術規范和道德
保障品質 保證專業,沒有后顧之憂
摘要:從具體到抽象,由感性到理性已成為廣大數學教師傳授知識的重要原則。“表象”就是人們對過去感知過的客觀世界中的對象或對象在頭腦中留下來的可以再現出來的形象,具有一定的鮮明性、具體性、概括性和抽象性。由于幾何的每一個定理都對應著一個圖形,這給我們在教學中提供了一定的便利。我們要求學生對定理的表象不能只停留在實體的形象上,而是讓學生有意識的記圖形,想圖形,以形成和喚起表象。我們認為,這對于理解、鞏固和記憶幾何定理起著重大的作用。
關鍵詞:建立表象、組合定理、聯想定理
教師在教途上并不是一帆風順的,尤其在農村中學,有時由于教學上的需要,往往到了初三,也會出現面對陌生學生的情況。筆者今年就遇到了尷尬:幾何證明題學生會證的,卻不會書寫或書寫不完整;知道步驟的原因和結論,但講不出定理的內容;更多的學生面對幾何題在證明時憑感覺。面對著時間緊、任務重,怎么辦呢?經過一番苦思冥想,針對學生基礎差、底子薄,決定狠抓“定理教學”。通過一段時間的復習,學生普遍反映在證題和書寫時有了“依靠”,也發現了定理的價值,基本樹立了“用定理”的意識。
那么,學生在證題時到底是由哪些原因造成思維受阻,產生解題的困惑呢?我們把它歸納為以下幾點:
⑴不理解定理是進行推理的依據。其實如果我們把一道完整的幾何證明題的過程進行分解,發現它的骨干是由一個一個定理組成的。而學生書寫的不完整、不嚴密,就因為缺乏對定理必要的理解,不會用符號語言表達,從而不能嚴謹推理,造成幾何定理無法具體運用到習題中去。
⑵找不到運用定理所需的條件,或者在幾何圖形中找不出定理所對應的基本圖形。具體表現在不熟悉圖形和定理之間的聯系,思考時把定理和圖形分割開來。對于定理或圖形的變式不理解,圖形稍作改變(或不是標準形),學生就難以思考。
⑶推理過程因果關系模糊不清。
針對以上的原因,我們在教學中采取了一些自救對策。
一、教學環節
對幾何定理的教學,我們在集中講授時分5個環節。第1、2 環節是理解定理的基本要求;第3 環節是基本推理模式,第4 環節是定理在推理過程中的呈現方式,提出了“模式+定理”的書寫方法;第5 環節是定理在解題分析時的導向作用,提出了“圖形+定理”的思考方法。程序圖設計如下:
基本要求 → 重新建立表象 →推理模式 → 組合定理 → 聯想定理
二、操作分析和說明
⒈ 定理的基本要求
我們認為,能正確書寫證明過程的前提是學會對幾何定理的書寫,因為幾何定理的符號語言是證明過程中的基本單位。因而在教學中我們采取了“一劃二畫三寫”的步驟,讓學生盡快熟悉每一個定理的基本要求,并重新整理了初中階段的定理(見附頁,此只列出與本文有關的定理),集中展示給學生。
例如定理43:直角三角形被斜邊上的高線分成的兩個直角三角形和原三角形相似。
一劃:就是找出定理的題設和結論,題設用直線,結論用波浪線,要求在劃時突出定理的本質部分。
如:“直角三角形”和“高線”、“相似”。
二畫:就是依據定理的內容,能畫出所對應的基本圖形。
如:
三寫:就是在分清題設和結論的基礎上,能用符號語言表達 ,允許采用等同條件。
如:∵△ABC是Rt△,CD⊥AB于D(條件也可寫成:∠ACB=90°,∠CDB=90°等) ∴△ACD∽△BCD∽△ABC 。
學生在書寫時果然出現了一些問題:
①不理解每個定理的條件和結論。學生在書寫時往往漏掉條件(如定理19漏掉垂直,定理46漏掉高、中線等);對條件太簡單的不會寫(如定理3);或者把條件當成結論(如定理12把三線都當成結論)。
②還表現在思維偏差。我們的要求是會用定理,而有些學生把定理重新證明一遍(如定理5、6);或者在一個定理中出現 ∵××,又∵××,∴××的錯誤。
③更多的是沒有抓住本質。具體表現在把非本質的條件當成本質條件(如定理7出現 ∵∠1 和∠2是同位角,∴AB∥CD);條件重復(如定理49,結論∠APO=∠BPO已經包括過圓心O,學生在條件中還加以說明);圖形過于特殊(如把定理1的圖畫成射影定理的基本圖形);文字過多(一些定理譯不出符號語言,用文字代替)等。