2019亚洲日韩新视频_97精品在线观看_国产成人精品一区二区_91精品网站在线观看

MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS

MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS期刊基本信息

  • 簡稱:MATH CONTROL SIGNAL
  • 大類:工程技術
  • 小類:自動化與控制系統
  • ISSN:0932-4194
  • IF值:0.8
  • 周期:Quarterly
  • 是否SCI:SCI/SCIE
  • 是否OA:No
  • 出版地:ENGLAND
  • 年文章數:21
  • 審稿速度:>12周,或約稿
  • 平均錄用比例:容易
投稿咨詢

MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS中文簡介

MCSS是一份國際期刊,致力于數學控制和系統理論,包括信號處理的系統理論方面。其獨特之處在于對數學系統論的重視;它集中于具有輸入和/或輸出以及動力學的系統的數學理論,這些系統通常由確定性或隨機性的常微分方程或偏微分方程、微分代數方程或差分方程來描述。潛在的主題包括但不限于可控性、可觀察性和實現理論、非線性系統的穩定性理論、系統辨識、切換、混合、網絡化和隨機系統的數學方面,以及最優控制和其他控制器設計技術的系統理論方面。如果有重要的理論貢獻,歡迎面向應用的論文。MCSS的編輯方針是發表原創和高質量的研究論文,其中包含大量的數學貢獻。還將審議關于系統和控制界特別感興趣的主題的面向數學的調查論文。僅應用已知數學技術、現有算法沒有進行數學分析或僅描述仿真研究的論文通常不發表。MCSS既不發表論文,也不發表技術說明。

MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS英文簡介

MCSS is an international journal devoted to mathematical control and system theory, including system theoretic aspects of signal processing.Its unique feature is its focus on mathematical system theory; it concentrates on the mathematical theory of systems with inputs and/or outputs and dynamics that are typically described by deterministic or stochastic ordinary or partial differential equations, differential algebraic equations or difference equations.Potential topics include, but are not limited to controllability, observability, and realization theory, stability theory of nonlinear systems, system identification, mathematical aspects of switched, hybrid, networked, and stochastic systems, and system theoretic aspects of optimal control and other controller design techniques. Application oriented papers are welcome if they contain a significant theoretical contribution.The editorial policy of MCSS is to publish original and high quality research papers which contain a substantial mathematical contribution. Mathematically oriented survey papers on topics of exceptional interest to the systems and control community will also be considered.Papers which merely apply known mathematical techniques, present algorithms without a mathematical analysis or only describe simulation studies are usually not published. MCSS publishes neither brief papers nor technical notes.

國際期刊推選 論文翻潤預審發表!

選擇豐富服務快速通過率高一鍵快速領取私人專屬發表方案!

* 請認真填寫需求信息,學術顧問24小時內與您取得聯系。

主站蜘蛛池模板: 丰原市| 莱西市| 峨眉山市| 营口市| 山东| 绥江县| 昌图县| 齐河县| 阳城县| 阳朔县| 南昌市| 兴安县| 德令哈市| 沛县| 中卫市| 错那县| 临邑县| 易门县| 莱西市| 封丘县| 关岭| 县级市| 五寨县| 定安县| 潜山县| 黑水县| 黄浦区| 常州市| 洛隆县| 临夏县| 凭祥市| 正蓝旗| 皮山县| 泾源县| 康保县| 方正县| 通河县| 海晏县| 唐山市| 阜城县| 清河县|