2019亚洲日韩新视频_97精品在线观看_国产成人精品一区二区_91精品网站在线观看

Journal of Hyperbolic Differential Equations

Journal of Hyperbolic Differential Equations期刊基本信息

  • 簡稱:J HYPERBOL DIFFER EQ
  • 大類:數(shù)學(xué)
  • 小類:應(yīng)用數(shù)學(xué)
  • ISSN:0219-8916
  • IF值:0.426
  • 周期:Quarterly
  • 是否SCI:SCIE
  • 是否OA:No
  • 出版地:UNITED STATES
  • 平均錄用比例:約50%
投稿咨詢

Journal of Hyperbolic Differential Equations中文簡介

該期刊發(fā)表關(guān)于非線性雙曲線問題和相關(guān)主題的原始研究論文,數(shù)學(xué)和/或物理興趣。具體而言,它邀請了關(guān)于雙曲守恒定律和數(shù)學(xué)物理中出現(xiàn)的雙曲偏微分方程的理論和數(shù)值分析的論文。期刊歡迎以下方面的貢獻:非線性雙曲守恒定律系統(tǒng)理論,解決了一個或多個空間維度中解的適定性和定性行為問題。數(shù)學(xué)物理的雙曲微分方程,如廣義相對論的愛因斯坦方程,狄拉克方程,麥克斯韋方程,相對論流體模型等。洛倫茲幾何,特別是滿足愛因斯坦方程的時空的全局幾何和因果理論方面。連續(xù)體物理中出現(xiàn)的非線性雙曲系統(tǒng),如:流體動力學(xué)的雙曲線模型,跨音速流的混合模型等。由有限速度現(xiàn)象主導(dǎo)(但不是唯一驅(qū)動)的一般問題,例如雙曲線系統(tǒng)的耗散和色散擾動,以及來自統(tǒng)計力學(xué)和與流體動力學(xué)方程的推導(dǎo)相關(guān)的其他概率模型的模型。雙曲型方程數(shù)值方法的收斂性分析:有限差分格式,有限體積格式等。該期刊旨在為目前正在非常活躍的非線性雙曲線問題領(lǐng)域工作的研究人員提供一個論壇,并且還將作為此類研究用戶的信息來源。提交稿件的長度沒有先驗限制,甚至可能會發(fā)表長篇論文。

Journal of Hyperbolic Differential Equations英文簡介

This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.The Journal aims to provide a forum for the community of researchers who are currently working in the very active area of nonlinear hyperbolic problems, and will also serve as a source of information for the users of such research.There is no a priori limitation on the length of submitted manuscripts, and even long papers may be published.

國際期刊推選 論文翻潤預(yù)審發(fā)表!

選擇豐富服務(wù)快速通過率高一鍵快速領(lǐng)取私人專屬發(fā)表方案!

* 請認(rèn)真填寫需求信息,學(xué)術(shù)顧問24小時內(nèi)與您取得聯(lián)系。

主站蜘蛛池模板: 盖州市| 湖南省| 常熟市| 涞源县| 灵宝市| 灌云县| 宁城县| 靖江市| 凌云县| 永寿县| 临漳县| 镇远县| 临泉县| 久治县| 若羌县| 新田县| 卢湾区| 达孜县| 孝昌县| 同德县| 囊谦县| 小金县| 沙坪坝区| 普兰店市| 和平区| 九江县| 和平县| 霍林郭勒市| 乌什县| 晋中市| 黄石市| 阿克| 霍山县| 云霄县| 乌鲁木齐县| 大同县| 临朐县| 新沂市| 灌云县| 渭源县| 武隆县|