2019亚洲日韩新视频_97精品在线观看_国产成人精品一区二区_91精品网站在线观看

CHAOS SOLITONS & FRACTALS

CHAOS SOLITONS & FRACTALS期刊基本信息

  • 簡稱:CHAOS SOLITON FRACT
  • 大類:物理
  • 小類:數(shù)學(xué)跨學(xué)科應(yīng)用
  • ISSN:0960-0779
  • ESSN:1873-2887
  • IF值:3.064
  • 周期:Semimonthly
  • 是否SCI:SCI/SCIE
  • 是否OA:No
  • 出版地:ENGLAND
  • 年文章數(shù):400
  • 審稿速度:約10.5個(gè)月
  • 平均錄用比例:容易
投稿咨詢

CHAOS SOLITONS & FRACTALS中文簡介

混沌,孤獨(dú)與分形有一個(gè)開放的鏡像期刊混沌,孤獨(dú)與分形:X,共享相同的目標(biāo)和范圍,編輯團(tuán)隊(duì),提交系統(tǒng)和嚴(yán)格的同行審查。《混沌,孤子與分形》雜志旨在成為非線性科學(xué)跨學(xué)科領(lǐng)域的領(lǐng)先期刊。它鼓勵(lì)提交關(guān)于下列主題基本原理的文章:動(dòng)力學(xué);物理學(xué)中的非平衡過程;復(fù)雜物質(zhì)和網(wǎng)絡(luò);計(jì)算生物學(xué);波動(dòng)和隨機(jī)過程;自組織;社會(huì)現(xiàn)象;技術(shù)。本刊只接受主要學(xué)科范圍在上述目標(biāo)范圍內(nèi)的論文。特別請(qǐng)注意以下事項(xiàng):為了被接受,更多數(shù)學(xué)性質(zhì)的手稿至少應(yīng)該嘗試與物理洞察力或新的定性特征相聯(lián)系。“孤子”一詞應(yīng)被理解為一個(gè)標(biāo)簽,特別適用于復(fù)雜自然現(xiàn)象中的所有非線性可積系統(tǒng)。這篇論文不應(yīng)該包含一些顯式公式、一些標(biāo)準(zhǔn)解、結(jié)構(gòu)或漸近方法。該雜志感興趣的文章提供了對(duì)分形數(shù)學(xué)理論的深刻見解,無論是在理解一般理論中發(fā)揮重要作用,或?qū)σ粋€(gè)重要的特殊應(yīng)用,特別是在復(fù)雜的系統(tǒng)中是深刻的。數(shù)值計(jì)算只應(yīng)有助于發(fā)展的結(jié)果。同樣受歡迎的是發(fā)現(xiàn)了新的分形,這些分形對(duì)于重要的應(yīng)用是至關(guān)重要的。主題列表在期刊的分類列表中進(jìn)一步指定。作者被要求在提交作品時(shí)指定匹配的分類。我們鼓勵(lì)作者鏈接到存儲(chǔ)庫中發(fā)布的數(shù)據(jù)或上傳到Mendeley data的數(shù)據(jù)。作者可以提交單獨(dú)的研究元素,簡要地描述他們的數(shù)據(jù)到數(shù)據(jù),軟件到軟件X。

CHAOS SOLITONS & FRACTALS英文簡介

Chaos, Solitons & Fractals has an open access mirror journal Chaos, Solitons & Fractals: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.Chaos, Solitons & Fractals aims to be a leading journal in the interdisciplinary field of Nonlinear Science. It encourages the submission of articles concerning the fundamentals of the following subjects: dynamics; non-equilibrium processes in physics; complex matter and networks; computational biology; fluctuations and random processes; self-organization; social phenomena; technology.The journal can only accept papers whose primary subject area lies within the above Aims & Scope. In particular, please take notice of the following:In order to be acceptable, manuscripts of more mathematical nature should at least attempt a connection to physical insight or new qualitative features. The word "Solitons" should be understood as a label especially extended to all nonlinear integrable systems in complex natural phenomena. The paper should not bear on some explicit formulae, some standard solutions, constructions, or asymptotic methods.The journal is interested in articles providing strong insights in the mathematical theory of fractals that play an important role either in understanding the general theory or are profound for an important particular application, especially in complex systems. Numerical computations should only assist the developed results. Also welcome are the discovery of new fractals that are crucial for important applications.The subject listing is specified further in the journal's classification list. Authors are required to specify matching classifications upon submission of their work.Authors are encouraged to link to their data posted in a repository or uploaded to Mendeley Data.Authors can submit separate research elements describing their data to Data in Brief and software to Software X.

CHAOS SOLITONS & FRACTALS中科院分區(qū)

大類學(xué)科 分區(qū) 小類學(xué)科 分區(qū) Top期刊 綜述期刊
數(shù)學(xué) 2區(qū) MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 數(shù)學(xué)跨學(xué)科應(yīng)用 PHYSICS, MATHEMATICAL 物理:數(shù)學(xué)物理 PHYSICS, MULTIDISCIPLINARY 物理:綜合 1區(qū) 1區(qū) 2區(qū)

JCR分區(qū)

JCR分區(qū)等級(jí) JCR所屬學(xué)科 分區(qū) 影響因子
Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Q1 9.922
PHYSICS, MATHEMATICAL Q1
PHYSICS, MULTIDISCIPLINARY Q1

CHAOS SOLITONS & FRACTALS影響因子

國際期刊推選 論文翻潤預(yù)審發(fā)表!

選擇豐富服務(wù)快速通過率高一鍵快速領(lǐng)取私人專屬發(fā)表方案!

* 請(qǐng)認(rèn)真填寫需求信息,學(xué)術(shù)顧問24小時(shí)內(nèi)與您取得聯(lián)系。

主站蜘蛛池模板: 瑞昌市| 盐边县| 岫岩| 夏津县| 都江堰市| 界首市| 保亭| 筠连县| 班戈县| 香格里拉县| 兴和县| 高密市| 高唐县| 伊春市| 奇台县| 临夏县| 梁平县| 利辛县| 葫芦岛市| 珲春市| 礼泉县| 富蕴县| 巴东县| 东丰县| 江津市| 沙坪坝区| 依兰县| 吴江市| 绍兴市| 开封县| 慈利县| 赤峰市| 鸡西市| 夏河县| 和林格尔县| 长海县| 甘孜县| 新源县| 太原市| 全椒县| 武功县|