2019亚洲日韩新视频_97精品在线观看_国产成人精品一区二区_91精品网站在线观看

CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE

CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE期刊基本信息

  • 簡稱:CONCURR COMP-PRACT E
  • 大類:工程技術
  • 小類:計算機:軟件工程
  • ISSN:1532-0626
  • IF值:1.167
  • 周期:Semimonthly
  • 是否SCI:SCIE
  • 是否OA:No
  • 出版地:ENGLAND
  • 年文章數:367
  • 審稿速度:一般,3-8周
  • 平均錄用比例:容易
投稿咨詢

CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE中文簡介

并發與計算實踐與經驗(CCPE)出版了高質量的原始研究論文和權威研究評論論文,這些論文的重疊領域包括:并行和分布式計算;高性能計算;計算和數據科學;人工智能和機器學習;大數據應用、算法和系統;網絡科學;本體論和語義學;安全和隱私;云/邊緣/霧計算;綠色計算;以及量子計算。強調與這些領域的實踐和經驗相關的新研究應該是貢獻的一個重要方面,而不是解決理論方面的問題。提交應該涉及或暗示重大的并發性和/或計算問題。在這些廣泛的領域中,CCPE的范圍包括并行和分布式系統計算和數據密集型應用程序的設計、實現和優化。這包括新的并發算法和應用程序的開發,它們的并行性能分析和建模,以及新的編程或建模語言和相關的組合方法。與計算和數據密集型應用相關的領域包括但不限于大規模計算科學、人工智能以及處理衛星、科學實驗、傳感器網絡、醫療儀器和其他來源的海量數據集。并行和分布式系統環境下的資源管理技術,以及能源感知計算也是人們感興趣的話題。

CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE英文簡介

Concurrency and Computation-Practice & Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:Parallel and distributed computing;High-performance computing;Computational and data science;Artificial intelligence and machine learning;Big data applications, algorithms, and systems;Network science;Ontologies and semantics;Security and privacy;Cloud/edge/fog computing;Green computing; andQuantum computing.Emphasis on novel research related to practice and experience in these areas should be an essential aspect of contributions, rather than addressing theoretical aspects. Submissions should involve or imply significant concurrency and/or computational issues. Within these broad areas, the scope of CCPE includes the design, implementation, and optimization of compute and data-intensive applications for parallel and distributed systems. This includes the development of novel concurrent algorithms and applications, their parallel performance analysis and modelling, and new programming or modelling languages and relevant methodologies for composing them. Areas relevant to compute and data-intensive applications include, but are not limited to, large-scale computational science, artificial intelligence, and the processing of voluminous datasets from satellites, scientific experiments, sensor networks, medical instruments, and other sources. Techniques for resource management in the context of parallel and distributed systems, and energy-aware computing are also topics of interest.

國際期刊推選 論文翻潤預審發表!

選擇豐富服務快速通過率高一鍵快速領取私人專屬發表方案!

* 請認真填寫需求信息,學術顧問24小時內與您取得聯系。

主站蜘蛛池模板: 汾阳市| 仁怀市| 郓城县| 边坝县| 乌苏市| 宝清县| 临高县| 华阴市| 瓮安县| 监利县| 石楼县| 安达市| 大荔县| 吉水县| 洪江市| 阿克| 兴化市| 济南市| 湘乡市| 绥德县| 葵青区| 阿克苏市| 鄂伦春自治旗| 休宁县| 海原县| 杂多县| 平安县| 息烽县| 修武县| 葵青区| 江油市| 呼伦贝尔市| 且末县| 黄山市| 东辽县| 平邑县| 遵义市| 阿巴嘎旗| 彝良县| 福泉市| 永德县|