我們的服務(wù)符合學(xué)術(shù)規(guī)范和道德
專業(yè) 高端讓您使用時沒有后顧之憂
《機器學(xué)習(xí)研究雜志》(JMLR)提供了一個國際論壇,用于電子和紙質(zhì)出版機器學(xué)習(xí)各個領(lǐng)域的高質(zhì)量學(xué)術(shù)文章。所有發(fā)表的論文均可在網(wǎng)上免費查閱。JMLR尋求以前未發(fā)表的關(guān)于機器學(xué)習(xí)的論文,其中包含:新的原則性算法,具有良好的經(jīng)驗驗證,并具有理論、心理或生物學(xué)性質(zhì)的合理性;實驗或理論研究,對智能系統(tǒng)中的學(xué)習(xí)設(shè)計和行為產(chǎn)生新的見解;說明現(xiàn)有技術(shù)的應(yīng)用,闡明這些方法的優(yōu)缺點;正式化新的學(xué)習(xí)任務(wù)(例如,在新的應(yīng)用環(huán)境中)和評估這些任務(wù)績效的方法;開發(fā)新的分析框架,促進實踐學(xué)習(xí)方法的理論研究;自然學(xué)習(xí)系統(tǒng)在行為或神經(jīng)層面上的數(shù)據(jù)計算模型;對現(xiàn)有工作的非常好的書面調(diào)查。
The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online. JMLR seeks previously unpublished papers on machine learning that contain:New principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;Experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;Accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;Formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;Development of new analytical frameworks that advance theoretical studies of practical learning methods;Computational models of data from natural learning systems at the behavioral or neural level;Extremely well-written surveys of existing work.
大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
計算機科學(xué) | 3區(qū) | AUTOMATION & CONTROL SYSTEMS 自動化與控制系統(tǒng) COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 | 4區(qū) 4區(qū) | 否 | 否 |
JCR分區(qū)等級 | JCR所屬學(xué)科 | 分區(qū) | 影響因子 |
Q2 | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | Q2 | 5.177 |
AUTOMATION & CONTROL SYSTEMS | Q2 |
* 請認真填寫需求信息,學(xué)術(shù)顧問24小時內(nèi)與您取得聯(lián)系。