2019亚洲日韩新视频_97精品在线观看_国产成人精品一区二区_91精品网站在线观看

JOURNAL OF NON-NEWTONIAN FLUID MECHANICS

JOURNAL OF NON-NEWTONIAN FLUID MECHANICS期刊基本信息

  • 簡稱:J NON-NEWTON FLUID
  • 大類:物理
  • 小類:力學(xué)
  • ISSN:0377-0257
  • IF值:2.27
  • 周期:Semimonthly
  • 是否SCI:SCI/SCIE
  • 是否OA:No
  • 出版地:NETHERLANDS
  • 平均錄用比例:較易
投稿咨詢

JOURNAL OF NON-NEWTONIAN FLUID MECHANICS中文簡介

非牛頓流體力學(xué)雜志出版了流動軟物質(zhì)系統(tǒng)的研究。歡迎提交流動復(fù)雜流體的所有領(lǐng)域,包括聚合物熔體和溶液、懸浮液、膠體、表面活性劑溶液、生物流體、凝膠、液晶和顆粒材料。與微流體、芯片上實(shí)驗(yàn)室、納米流體學(xué)、生物流、地球物理流、工業(yè)過程和其他應(yīng)用相關(guān)的流動問題引起了人們的興趣。被認(rèn)為適合期刊的主題包括以下內(nèi)容(不一定按重要性排序):自然或技術(shù)相關(guān)的流動問題的理論、計(jì)算和實(shí)驗(yàn)研究,其中流體的非牛頓性質(zhì)對確定流動特性很重要。我們特別尋求能夠?qū)?fù)雜流體中的流動行為進(jìn)行機(jī)械性洞察或突出復(fù)雜流體特有的流動現(xiàn)象的研究。示例包括非牛頓流體中的不穩(wěn)定性、不穩(wěn)定和湍流或混沌流動特性,涉及復(fù)雜流體的多相流,涉及傳熱、傳質(zhì)和混合等輸運(yùn)現(xiàn)象的問題,在一定程度上,非牛頓流動行為是輸運(yùn)現(xiàn)象的核心。新的流動情況表明需要進(jìn)一步的理論研究,流動的實(shí)際情況需要系統(tǒng)的理論和實(shí)驗(yàn)研究。這些問題和發(fā)展通常出現(xiàn)在聚合物加工、石油、制藥、生物醫(yī)學(xué)和消費(fèi)品行業(yè)。此列表旨在具有代表性,而不是詳盡無遺。非牛頓流體方程的數(shù)學(xué)分析適用于復(fù)雜流體流動問題的數(shù)值方法從連續(xù)介質(zhì)和微觀結(jié)構(gòu)出發(fā),建立了非牛頓流體的流變本構(gòu)方程。流變本構(gòu)方程預(yù)測的實(shí)驗(yàn)評估。宏觀和微觀層面的流變測量裝置和方法,包括微觀流變學(xué)。過分抽象、形式化或人為的發(fā)展將不受歡迎。

JOURNAL OF NON-NEWTONIAN FLUID MECHANICS英文簡介

The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.Subjects considered suitable for the journal include the following (not necessarily in order of importance):Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples includeInstabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,Multiphase flows involving complex fluids,Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,Novel flow situations that suggest the need for further theoretical study,Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.This list is meant to be representative, not exhaustive.Mathematical analysis of equations relevant to non-Newtonian flowsNumerical methods suited to problems in flowing complex fluidsDevelopment of rheological constitutive equations for non-Newtonian fluids from both continuum and microstructural starting points.Experimental assessment of predictions from rheological constitutive equations.Devices and methodologies for rheological measurements at both macro- and microscopic levels, including microrheology.Overly abstract, formalistic or artificial developments will not be welcomed.

國際期刊推選 論文翻潤預(yù)審發(fā)表!

選擇豐富服務(wù)快速通過率高一鍵快速領(lǐng)取私人專屬發(fā)表方案!

* 請認(rèn)真填寫需求信息,學(xué)術(shù)顧問24小時內(nèi)與您取得聯(lián)系。

主站蜘蛛池模板: 平陆县| 宜良县| 凤翔县| 南汇区| 景洪市| 红河县| 靖州| 蒙阴县| 海伦市| 克拉玛依市| 莱阳市| 南漳县| 平和县| 独山县| 鄂托克前旗| 望城县| 德格县| 绥化市| 外汇| 香港 | 民权县| 资溪县| 泰来县| 沛县| 西乌珠穆沁旗| 育儿| 隆回县| 曲阜市| 宁陕县| 绥德县| 阿瓦提县| 咸宁市| 苏州市| 荔波县| 顺平县| 龙里县| 保定市| 忻城县| 赤峰市| 巴里| 措美县|