2019亚洲日韩新视频_97精品在线观看_国产成人精品一区二区_91精品网站在线观看

International Journal for Numerical Methods in Biomedical Engineering

International Journal for Numerical Methods in Biomedical Engineering期刊基本信息

  • 簡稱:INT J NUMER METH BIO
  • 大類:工程技術
  • 小類:工程:生物醫學
  • ISSN:2040-7939
  • IF值:2.082
  • 周期:Monthly
  • 是否SCI:SCIE
  • 是否OA:No
  • 出版地:ENGLAND
  • 平均錄用比例:容易
投稿咨詢

International Journal for Numerical Methods in Biomedical Engineering中文簡介

數學模型提出新的數學模型,以更準確地描述現有或新的生物和生物醫學過程,并使用標準數值方法求解。計算方法新的計算方法/程序,以更準確地解決生物醫學問題的現有數學模型。只要證明該方法優于競爭方法,就可以接受任何尺寸示例。應用利用現有的數學模型和數值模型,解決了臨床和實際應用中的新問題。除少數特殊情況外,至少需要3D。收斂性和其他精度檢查是強制性的。一般:前瞻性作者被邀請提交生物醫學工程領域的原創文章和評論,以國際生物醫學工程數值方法雜志。標準紙的長度通常不超過20個格式化頁,包括數字。主題:所有基于微分方程的生物醫學應用模型和新的解決方案(使用已建立的數值方法,如有限差分法、有限元法和有限體積法或新的數值方法)都在本雜志的范圍內。如果論文的一個部分涉及數值方法,也歡迎使用實驗和分析主題的手稿。不涉及微分方程的特殊情況,如圖像處理、網格劃分和人工智能都在范圍之內。任何與人體健康有直接或間接聯系的研究也在本雜志的范圍內。·A部分-基礎:任何新的數學模型和新的數值解都應被歸類為基礎。任何在生物醫學工程/科學中發現基本物理現象的工作也將被歸類為基本工作。·B部分-應用:對醫療保健有直接影響的任何工作應視為應用程序。使用標準和眾所周知的數值方法研究新的生物醫學問題的大多數案例都屬于這一類。

International Journal for Numerical Methods in Biomedical Engineering英文簡介

Mathematical modelNew mathematical models presented to more accurately describe existing or new biological and biomedical processes and solved using standard numerical methods.Computational MethodNew computational methods/procedures to more accurately solve existing mathematical models for biomedical problems. Any dimensional examples are accepted as long as the method is demonstrated to be better than competing methods.ApplicationsNew problemsof clinical and practical interest are solved using existing mathematical and numerical models. At least 3D is required, except for a small number of special cases. Convergence and other accuracy checks are mandatory.General: Prospective authors are invited to submit original articles and reviews in the area of biomedical engineering to International Journal for Numerical Methods in Biomedical Engineering. A standard paper should not normally exceed 20 formatted pages in length, including figures.Topics: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.·Part A - Fundamentals: Any new mathematical models and novel numerical solutions should be classed as fundamental. Any work that discovers a fundamental physical phenomenon in biomedical engineering/science will also be categorized as fundamental.·Part B - Applications: Any work with immediate impact in healthcareshould be treated as application. The majority of cases that use standard and well known numerical methods to study new biomedical problems typically fall into this category.

國際期刊推選 論文翻潤預審發表!

選擇豐富服務快速通過率高一鍵快速領取私人專屬發表方案!

* 請認真填寫需求信息,學術顧問24小時內與您取得聯系。

主站蜘蛛池模板: 峨眉山市| 洛南县| 左贡县| 陈巴尔虎旗| 乌拉特后旗| 枝江市| 穆棱市| 陈巴尔虎旗| 山西省| 凤翔县| 高密市| 琼结县| 边坝县| 化德县| 静宁县| 江华| 常山县| 敦煌市| 巫山县| 临安市| 沈丘县| 馆陶县| 灵石县| 连城县| 都江堰市| 全南县| 吐鲁番市| 黑河市| 牙克石市| 桦甸市| 瑞丽市| 聊城市| 平乡县| 普陀区| 黄浦区| 上犹县| 康定县| 科尔| 察隅县| 蒙城县| 克什克腾旗|