2019亚洲日韩新视频_97精品在线观看_国产成人精品一区二区_91精品网站在线观看

FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY

FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY期刊基本信息

  • 簡稱:FRACTALS
  • 大類:數學
  • 小類:數學跨學科應用
  • ISSN:0218-348X
  • ESSN:1793-6543
  • IF值:2.971
  • 周期:Quarterly
  • 是否SCI:SCI/SCIE
  • 是否OA:No
  • 出版地:SINGAPORE
  • 年文章數:80
  • 審稿速度:>12周,或約稿
  • 平均錄用比例:容易
投稿咨詢

FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY中文簡介

在過去的幾十年里,涉及復雜幾何、模式和尺度的現象研究經歷了驚人的發展。在這相對較短的時間內,幾何和/或時間尺度已經被證明代表了在物理、數學、生物學、化學、經濟學、技術和人類行為等不同尋常的領域中發生的許多過程的共同方面。通常,一個現象的復雜性表現在其底層復雜的幾何結構中,在大多數情況下可以用具有非整數(分形)維數的對象來描述。在其他情況下,事件在時間上的分布或各種其他數量的分布顯示特定的縮放行為,從而更好地理解決定給定流程的相關因素。在相關的理論、數值和實驗研究中,將分形幾何和尺度作為一種語言,使我們能夠更深入地了解以前難以解決的問題。其中,通過應用尺度不變性、自親和性和多分形性等概念,對增長現象、湍流、迭代函數、膠體聚集、生物模式形成、股票市場和非均勻材料有了更好的理解。專門研究上述現象的期刊的主要挑戰在于其跨學科的性質;我們致力于匯集這些領域的最新發展,以便就自然界和社會中復雜的時空行為采取各種方法和科學觀點進行富有成效的相互作用。

FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY英文簡介

The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, technology and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes. Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality. The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.

FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY中科院分區

大類學科 分區 小類學科 分區 Top期刊 綜述期刊
數學 2區 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 數學跨學科應用 MULTIDISCIPLINARY SCIENCES 綜合性期刊 2區 3區

JCR分區

JCR分區等級 JCR所屬學科 分區 影響因子
Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Q1 4.555
MULTIDISCIPLINARY SCIENCES Q2

FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY影響因子

國際期刊推選 論文翻潤預審發表!

選擇豐富服務快速通過率高一鍵快速領取私人專屬發表方案!

* 請認真填寫需求信息,學術顧問24小時內與您取得聯系。

主站蜘蛛池模板: 禹州市| 华池县| 天台县| 方山县| 中西区| 营口市| 临潭县| 松溪县| 汽车| 洛隆县| 金乡县| 龙岩市| 墨脱县| 桂阳县| 荥阳市| 洛南县| 阿坝县| 灌南县| 凯里市| 闵行区| 扶沟县| 时尚| 尼勒克县| 海伦市| 双桥区| 临桂县| 巫山县| 德惠市| 肃宁县| 铁岭市| 通渭县| 申扎县| 虹口区| 博客| 屏山县| 凌源市| 金门县| 青神县| 兴文县| 崇左市| 昭苏县|