2019亚洲日韩新视频_97精品在线观看_国产成人精品一区二区_91精品网站在线观看

JOURNAL OF ALGEBRA

JOURNAL OF ALGEBRA期刊基本信息

  • 簡稱:J ALGEBRA
  • 大類:數學
  • 小類:數學
  • ISSN:0021-8693
  • ESSN:1090-266X
  • IF值:0.666
  • 周期:Semimonthly
  • 是否SCI:SCI/SCIE
  • 是否OA:No
  • 出版地:UNITED STATES
  • 平均錄用比例:容易
投稿咨詢

JOURNAL OF ALGEBRA中文簡介

《代數雜志》是一份領先的國際期刊,發表的論文顯示了在代數和相關計算方面的高質量研究成果。只有最好和最有趣的論文才會被考慮發表在雜志上。考慮到這一點,重要的是,這一貢獻應產生實質性的結果,對實地產生持久的影響。該雜志還在尋找能夠提供創新技術的工作,為未來的研究提供有希望的結果。計算代數部分計算代數部分已被引入,以提供一個適當的論壇,供利用計算機計算作出貢獻,并擴大該期刊的范圍。在《代數雜志》的計算代數部分,下列論文特別受歡迎:?通過計算機計算得到的結果——要適合發表這些結果,必須代表數學的一大進步。用更高的計算機能力來擴展以前的計算是不夠的。相反,貢獻必須展示新的方法和數學結果才能被接受。?特定代數結構的分類(如果合適,以表的形式),這些結構不容易獲得,并且對代數社區有用。?對實驗的描述和結果,提出新的猜想,支持現有猜想,或者對現有猜想給出反例。?論文強調代數建設性的一面,如描述和分析的新算法(不是程序清單,也不是,在第一個實例,討論軟件開發的問題),改進和擴展現有的算法,計算方法的描述并不是嚴格意義上的算法(例如,他們不需要終止)。?代數與計算機科學之間的交互,如自動結構、字詞問題以及組和半組中的其他決策問題,最好,但不一定,強調相關算法的實用性、實現和性能。?歡迎來自代數的所有領域的貢獻,包括代數幾何或代數數論,如果重點是代數方面。描述代數結果或方法的應用的貢獻,例如在編碼理論,密碼學,或微分方程的代數理論是非常受歡迎的。在計算代數部分發表論文的一個重要的通用標準是它對建設性方面的強調。這本雜志有一個開放的檔案。所有已發表的項目,包括研究論文,都可以無限制地訪問,并在發表48個月后永久免費閱讀和下載。存檔中的所有論文均受愛思唯爾用戶許可的約束。

JOURNAL OF ALGEBRA英文簡介

The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.The Computational Algebra SectionThe Computational Algebra section has been introduced to provide an appropriate forum for contributions which make use of computer calculations and to broaden the scope of the Journal.The following papers are particularly welcome in the Computational Algebra section of the Journal of Algebra:? Results obtained by computer calculations - to be suitable for publication such results must represent a major advance of mathematics. It is not sufficient to extend previous computations by means of higher computer power. Rather the contribution has to exhibit new methods and mathematical results to be accepted.? Classifications of specific algebraic structures (in form of tables, if appropriate), which are not easily obtained and are useful to the algebraic community.? Description and outcome of experiments, to put forward new conjectures, to support existing conjectures, or to give counter examples to existing conjectures.? Papers emphasizing the constructive aspect of algebra, such as description and analysis of new algorithms (not program listings, nor, in the first instance, discussions of software development issues), improvements and extensions of existing algorithms, description of computational methods which are not algorithms in the strict sense (since, e.g., they need not terminate).? Interactions between algebra and computer science, such as automatic structures, word problems and other decision problems in groups and semigroups, preferably, but not necessarily, with an emphasis on practicality, implementations, and performance of the related algorithms.? Contributions are welcome from all areas of algebra, including algebraic geometry or algebraic number theory, if the emphasis is on the algebraic aspects.Contributions describing applications of algebraic results or methods, for example in coding theory, cryptography, or the algebraic theory of differential equations are highly welcome. An important general criterion for the publication of a paper in the Computational Algebra section is its emphasis on the constructive aspects.This journal has an Open Archive. All published items, including research articles, have unrestricted access and will remain permanently free to read and download 48 months after publication. All papers in the Archive are subject to Elsevier's user license.

JOURNAL OF ALGEBRA中科院分區

大類學科 分區 小類學科 分區 Top期刊 綜述期刊
數學 2區 MATHEMATICS 數學 2區

JCR分區

JCR分區等級 JCR所屬學科 分區 影響因子
Q3 MATHEMATICS Q3 0.908

JOURNAL OF ALGEBRA影響因子

國際期刊推選 論文翻潤預審發表!

選擇豐富服務快速通過率高一鍵快速領取私人專屬發表方案!

* 請認真填寫需求信息,學術顧問24小時內與您取得聯系。

主站蜘蛛池模板: 全椒县| 泸西县| 关岭| 横山县| 互助| 文登市| 涪陵区| 建瓯市| 巴彦淖尔市| 砀山县| 兴安盟| 荔波县| 左云县| 大埔区| 上饶县| 务川| 西丰县| 汤原县| 嵩明县| 阿图什市| 渑池县| 台北市| 宜君县| 隆昌县| 大姚县| 石泉县| 米泉市| 麻城市| 黎川县| 锡林郭勒盟| 鹤岗市| 海南省| 色达县| 明光市| 乌鲁木齐县| 大方县| 喀喇沁旗| 鸡泽县| 双辽市| 葫芦岛市| 贵溪市|